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Abstract  
 
The paper presents an approach for belief updating in Timed Influence Nets. Influence Nets 
provide graphical representation of causal or influencing relationships in complex situations. 
They are used to model and evaluate courses of actions in certain domains and to compare the 
performance of actions based on the desired outcome. In Timed Influence Nets, the impact or 
effect of these actions on target variables is not instantaneous. This is modeled by adding 
communication and processing delays in the model. The paper provides a technique for updating 
the beliefs of variables in the model over time once new evidence is received about some of the 
variables in the model. The objective is to assess the behavior of the variables of interest as a 
function of both the timing of actions and the receipt of evidence on indicators, thus providing 
aid to decision makers in the revision of the planned courses of actions. 

1 Introduction 
 
Probabilistic Belief Networks have gained popularity in last two decades to model uncertainty 
[Charniak, 1991], [Jensen, 2001], [Neapolitan, 2003], and [Pearl, 1987]. Commonly referred to 
as Bayesian Networks (BN), these belief networks use a graph-theoretic representation to 
explicitly show the dependencies among variables in a particular domain. Formally BNs are 
Directed Acyclic Graphs (DAG) in which nodes represent random variables while an edge 
connecting two nodes (typically) represents causal relationship (though it is not required that the 
connection be causal) between the two variables. The relationship between a node and its parents 
is defined by a Conditional Probability Table (CPT) for all combination of parents’ states. The 
joint distribution over the random variables present in the network can be expresses as 

∏=
i

iin xpaxPxxP ))(|(),.....,( 1  

where pa(xi) represents a configuration of the set of parents of variable xi. 
  

These networks have been primarily designed to simplify the intractable task of joint 
probability distribution elicitation.  They have been usually applied without considering an 
explicit representation of time. In the past few years, efforts have been taken to integrate the 
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notion of time and uncertainty [Figueroa and Sucar, 1999], [Galan and Diez, 2002], [Hanks et 
al., 1995], [Kjaerulff, 1992], and [Santos and Young, 1999]. The popular approach of modeling 
processes having temporal dependencies is to discretize the time and create an instance of each 
random variable present for each point in time. The process starts with eliciting the probability 
distributions for the static probabilistic model. This model is repeated for difference time slices, 
and links are drawn between these slices to represent the temporal dependencies among the 
nodes in the network. The approach is usually referred to as Time Sliced Bayesian Networks 
(TSBNs) or Dynamic Bayesian Networks (DBNs) [Murphy, 2002]. Figure 1 shows two types of 
TSBNs as discussed by Hanks et al., [1995]. In Figure 1 on the left, all the connections in the 
models are inter-slice, i.e., connections only exist among variables within different time slices. 
On the contrary in Figure 1 on the right, the variables in the model have both inter-slice and 
intra-slice connections.  
 
 
 
 
 
 
 
 
 
 

Figure 1: Examples of Time Sliced Probabilistic Networks 
 
Despite the fact that probabilistic belief networks address the intractable problem of 

eliciting joint distribution of random variables in an efficient way, the number of parameters 
required to specify the Conditional Probability Table (CPT) of a node increases exponentially 
with the number of parents. Several approaches have been proposed that estimate the CPT values 
from parameters that are linear with the number of parents. These include but not limited to 
Noisy-OR [Agosta, 1991], [Drudzel and Henrion, 1993], and [Heckerman and Breese, 1996], 
CAusal STrength (CAST) Logic [Chang et al., 1994] and [Rosen and Smith, 1996], etc. The 
probabilistic models that use CAST Logic as an interface for estimating the CPTs for each node 
in the network are referred to as Influence Nets. Influence Nets simplify knowledge elicitation by 
reducing the number of parameters that must be provided.  They are appropriate for modeling 
situations in which the estimate of the conditional probability is subjective, e.g., when modeling 
potential human reactions and beliefs, and when subject matter experts find it difficult to fully 
specify all conditional probability values.   
 
 Timed Influence Nets (TINs) [Wagenhals and Levis, 1999], extend the CAST logic based 
interface of Influence Nets by providing a way to model uncertainty and temporal constrains 
present in a stochastic model from a Discrete Event System’s (DES) perspective. These TINs are 
developed by making cause and effect or influencing relationships among variables in the 
domain. The links between two variables represents the temporal causal relationship between 
them. The impact of one variable on other variables does not necessarily occur instantaneously; 
rather it may occur after a specified time. This time is represented by the assignment of a delay 
to each link. All the nodes in the network could also have an optional time delay which 



represents the information processing delay of the corresponding node. The marginal probability 
of a node is computed whenever there is a change in the state (the marginal probability) of any of 
its parents. To achieve this behavior in a computationally efficient manner, TINs propagate 
probabilities using independence of parents assumption, also referred to as loopy belief 
propagation [Murphy et al., 1999].  
 
 TINs have been used experimentally in the area of Effect Based Operations (EBO) 
[Wagenhals et al., 2003]. They are modeled by identifying target variables and relating them to 
the actions that could impact them. The purpose of creating such models is to determine how to 
maximize or minimize the probability of occurrence of the target variables by taking a timed 
sequence of actions or actionable events. Actionable events, in this context refer to the random 
variables that are modeled as root nodes in the corresponding TIN. The actionable events (either 
under the control of the decision maker or the adversary) and the variable of interest (target 
variable) are connected through chains of variables that represent intermediate effects. Some of 
these variables may be observable. This paper describes an extension to the capability of TINs by 
adding the provision of incorporating new evidence in the model. The algorithm presented in the 
paper provides an approximation scheme for updating the belief of the affected variables after 
observing evidence provided that certain constraints are satisfied. The algorithm first tries to 
reduce the net by identifying those variables which are relevant for computing the posterior 
probability of a target variable over an interval of time. The nodes, which do not have any impact 
on the variable of interest as a result of new evidence, are considered as being pruned from the 
net. In the second step, the algorithm computes the new beliefs on all the affected variables 
taking into account the time delays (communication and processing delay) present in the graph. 
This technique provides an initial step in the direction of integrating the impact of planned 
Course of Action (COA) [Wagenhals and Levis, 2000] selected by the decision maker over a 
time interval and the information/observations which arrive during / after the execution of that 
particular COA. The objective is to assess impact of the actionable events as the situation 
dynamically unfolds. 
 
 The rest of the paper is organized as follows. Section 2 discusses the mathematical 
formulation of TINs and their application. Section 3 describes the belief propagation algorithm 
that supports the incorporation of evidence, while Section 4 concludes the paper and points out 
areas for future research. 

2 Modeling Uncertainty Using Timed Influence Nets 
  
2.1 Knowledge Elicitation 
 
TINs use CAST logic, a variant of Noisy-OR, to simplify knowledge elicitation from subject 
matter experts. Instead of assigning conditional probabilities, the expert first specifies the 
qualitative relationship between two connected nodes as either promoting or inhibiting. Figure 2 
shows a simple two node influence net. In Figure 2(a), the modeler indicates that the presence of 
A can cause B (with some probability), and a ‘+’ sign is attached to the arc. Similarly, the 
modeler indicates that the absence of A can inhibit B, therefore there is a ‘-‘ sign attached in 
Figure 2(b). Figure 2(c) shows the aggregated qualitative relationship between two nodes by 
using the double (+, -) notation.  If the modeler had determined that the presence of A inhibits B 



while the absence of A promotes B, then the aggregate notation would be (-, +). Qualitative 
relationships among variables have also been applied for Qualitative Probabilistic Networks 
(QPN) [Drudzel and Henrion, 1993] and Causal Maps [Nadkarni and Shenoy, 2001].  
 

After (or during) assigning the qualitative relationships between the two nodes, the 
expert(s) quantify these relationships by assigning values on the scale of 0 to 1. Low values 
mean the promoting or inhibiting relationship is weak while values near 1 mean the relationship 
is strong.  The CAST logic uses a heuristic to convert theses qualitative relationships to form the 
conditional probability matrix for each non-root node. Besides reducing the number of 
parameters required for specifying the conditional probability matrix for each node, the CAST 
logic also helps in eliciting knowledge from different subject matter experts. For instance, in an 
international conflict, there are many dimensions of the problem, namely political, religious, 
ethnic, social, etc. It is difficult to find domain experts having expertise in all the above areas. 
The CAST logic provides a mechanism to obtain information from various experts and then 
combine their individual assessment in a mathematical manner. The exact details of the CAST 
logic algorithm are beyond the scope of this paper. The interested reader should refer to Chang et 
al., [1994] and Rosen and Smith, [1996]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Qualitative Relationships in TIN 
Timed Influence Nets extend the capabilities of Influence Nets by providing a mechanism 

to specify certain kinds of temporal constraints present in a problem domain. Wagenhals et al. 
[2003] have classified 4 types of temporal information that could be associated with a Timed 
Influence Nets. Out of them, three are part of the model itself and one is related to the input 
scenario. The input scenario can be described in terms of the actions in the Course of Action 
(COA) and the time at which these actions occur. Among the remaining three types of temporal 
information, one is related to the duration of an action. The second type is related to the 
communication and processing delay present in a problem domain. In other words, this type 
represents the amount of time it takes for knowledge about a change in the status of any variable 
to be propagated by some real world phenomenon to the node that is affected by that change. The 
third type of temporal information is sometimes referred to as persistence. This is the time 
interval over which an effect is manifested. Because of the complexity of this problem, the issue 
of modeling persistence is still an area of active research. In the sequel, when we discuss TINs 
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we mean Influence Nets that are capable of modeling the first three types of temporal 
information (without persistence). The full specification of a Timed Influence Net is as follows 
 

1. A set of random variables that makes up the nodes of a TIN. All the variables in the TIN 
have binary states. 

2. A set of directed links that connect pairs of nodes. 
3. Each link has associated with it a pair of CAST Logic parameters that shows the causal 

strength of the link (usually denoted as g and h values). 
4. Each non-root node has an associated CAST Logic parameter (denoted as baseline 

probability) while each root node has a prior probability. 
5. Each link has a corresponding delay d (where d > 0) that represents the communication 

delay.  
6. Each node has a corresponding delay e (where e > 0) that represents the information 

processing delay. 
7. A pair (p, t) for each root node, where p is a list of real numbers representing probability 

values. For each probability value, a corresponding time interval is defined in t.  In 
general, (p, t) is defined as  

 
([p1, p2,…, pn], [[t11, t12], [t21, t22], …., [tn1, tn2]] where ti1 < ti2 and tij > 0 

         ∀  i = 1, 2, …., n and j = 1, 2 
The first four requirements in the above specifications are the same for static and timed 

Influence Nets. The last three requirements are related specifically to TINs. Once a TIN is 
completely specified, it can be used to observe the behavior of variables of interest over a 
specific period of time. 
 
2.2 Course of Action Analysis  
 
Figure 3 [Wagenhals and Levis, 1999] shows how a TIN model compactly represents actionable 
events, causal or influencing relationships between actions and effects,  the strengths of those 
relationships, and the time delays associated with effect propagation.  It illustrates  the kind of 
analysis that could be done using TINs. The model shows the cause and effect relationship as 
seen by an expert on international politics.  
  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: A Simple Timed Influence Nets 



 
Country B has occupied portion of land of a neighboring country. The objective is to find 

a peaceful solution of the problem, or, in other words, the objective is to determine the 
probability that country B would agree to withdraw its forces.  There are five variables in the 
Influence Net represented by the five boxes. Each arc in the net has an annotation that is a triple. 
The first two elements of the triple contain the influence strength of the presence and absence of 
the parent node on the child node. The third entry is the time delay required for the influence to 
reach from parent to child. The prior probabilities of each root node are also shown in the figure.  
 

The next stage is to set the time for execution of the actions represented as root nodes. 
Suppose the actions are executed at the following times:  

Diplomatic Mission in Country B @ 8 
Int’l Community Threatens Sanctions @ 10 
Country G Employs Successful Covert Mission @ 11 
 
The influences of these actions reach the target node (Country B Agrees to Withdraw) at 

different times. Every time an influence arrives at the target node, the TIN updates the belief of 
target node. These belief updates and the time each one occurs are shown in the form of a 
probability profile (Figure 4). 

 
Figure 4: Probability Profile for Node “Country B Agrees to Withdraw” 

3 Belief Propagation Algorithm 
 
TINs were originally designed for the COA analysis.  In the original TIN formulation it was 
assumed that all the actions are in fact evidence nodes and there would be no evidence on the 
other nodes in the networks. Thus, these TINs lacked the ability to incorporate the 
information/evidence coming from different sources during the execution of a COA. In a 
military/political scenario, this new information might come from the surveillance system 
observing an adversary’s actions. In an economic domain, a new development in the market, e.g., 
bankruptcy filed by some corporation, might be taken into account before making a strategic 
decision. In any case, this new information results in the revision of a previously held belief 
about some variables in the domain. This section, which is the main theme of this paper, extends 
the ability of the original TINs by presenting an approach for integrating the new information 
with the existing beliefs on other variables in the net. The algorithm takes advantage of the fact 



that while analyzing a TIN, the analyst is primarily interested in observing the behavior of the 
desired objectives. This feature helps in applying graph reduction techniques and simplifies the 
belief revision process.  Instead of revising the beliefs on all the variables in the net, the belief 
revision process is applied to only those set of variables which impact the variable of interest in 
some way. The algorithm is based on the constraint that the marginal probability of a parent 
node will not be updated unless all of its children which need to be updated have updated 
marginal probabilities. 
 

The algorithm has three main steps.  The first step determines the sequence in which the 
marginal probability of nodes will be updated once evidence has been incorporated in one of the 
nodes of the model. Step two selects only the nodes in the sequence that are needed to update the 
target node.  In Step 3, the updating is accomplished node by node in the sequence determined in 
Step one.   The following sub sections describe the working of the algorithm in detail. 
 

Table 1: Algorithm for Sequencing of Nodes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.1 Sequencing of Nodes 
 
The algorithm that determines the sequence for updating the nodes in the TIN is presented in 
Table 1. It creates a sequenced list of all of the ancestors of a node to which evidence is applied.  
The sequence is based on a breadth first protocol that ensures the closest ancestors are placed on 
the list before more distant ancestors. This sequence shows the order of the belief updating of 
nodes in the net. The node for which we have obtained hard evidence is assigned sequence 
number one. The parents of the node are sequenced then, and the process continues until all root 
nodes that have a path to the evidence node are reached. We call this process backward 
sequencing. The resultant sequence is then used to update the probabilities of nodes during 
backward propagation. It should be noted that after reaching a root node, the belief updating 
process continues in the forward direction and the nodes, which were not updated during the 
backward direction, are then updated until the algorithm reaches the target node. The example 
TIN in Figure 5(a) is used to explain the sequencing algorithm. Only the structure of the TIN and 
the time delays are shown in the figure for clarity.   

 

Let X be the evidence node, 
1) NodeList = [X] 
2) While NodeList has unprocessed nodes 
       Current_Node  =  1st Unprocessed node in the 

          NodeList  
      If there exists descendant of Current_Node 
      unprocessed in the NodeList then 
          Move Current_Node at the end of the NodeList 
      Else 
          Add parents of Current_Node in the NodeList 
          Mark Current_Node as processed  
  End Loop 



Suppose evidence about node ‘H’ in Figure 5(a) is obtained. In the first step, the 
algorithm initialized the NodeList with ‘H’. In the second step, the variable ‘Current_Node’ is 
assigned the first unprocessed node in ‘NodeList’, which in this case is ‘H’. Since ‘H’ is the 
evidence node, the parents of the ‘H’ are entered in the list, and 'H' is considered to be a 
processed node.  At the end of the first iteration of step 2, ‘NodeList’ has value [H, I, F]. Nodes 
'I' and 'F' are unprocessed.  The sequence of choice of parents of ‘H’ is arbitrary, so ‘NodeList’ 
could have the value [H, F, I]. 

 
In the next iteration, ‘I’ becomes the Current_Node. None of the descendants of ‘I’, are in 

the list of unprocessed nodes, so the parent of ‘I’ (node 'D') is added to in the ‘NodeList’. At the 
end of this iteration ‘NodeList’ has the value [H, I, F, D]. The next unprocessed variable in the 
list is ‘F’ and since the descendants of ‘F’ have already been processed in the list, the parents of 
‘F’ are included in the list. The ‘NodeList’ now has value [H, I, F, D, G, B]. Next ‘D’ is assigned 
to Current_Node but one of the descendants of ‘D’, i.e., ‘G’, is still in the list unprocessed. Thus 
‘D’ is moved to the end of the list. The new value of ‘NodeList’ is [H, I, F, G, B, D]. This time 
node ‘G’ is the Current node and the only child of ‘G’ has already been included in the list, 
therefore parents of ‘G’ are also included in the list, making the value of NodeList be [H, I, F, G, 
B, D, E]. In this way, the algorithm keeps iterating, until all the nodes in the NodeList are 
processed. The final value of NodeList is [H, I, F, G, E, D, C, B, A, M]. In general, there can be 
more than one possible sequence, however, all sequences will produce the same results as far as 
belief updating is concerned.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5(a): TIN for Explaining the Sequencing of Nodes Algorithm 
Figure 5(b): TIN after Pruning 
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3.2 Graph Reduction 
 
The steps described in the previous sections give the node ordering that would be used while 
updating the nodes in the backward direction. But not all of the nodes are required, if the 
objective is to only see the impact of the evidence on the target node. Considering the same 
example used in the previous section, nodes ‘A’ and ‘M’ represent the actions taken by the 
decision maker(s). If the evidence is received after the execution of these actions and the 
objective is to analyze the behavior of node ‘K’, then there is no need to update nodes G, E, D, 
and C. All we need to do is to update I, F, and B in the backward propagation and then update 
the descendants of these variables during forward propagation. The process is referred as graph 
pruning. The resulting TIN is shown in Figure 5(b).  

 
The sequencing and pruning algorithms can be used when evidence is available for more 

than one node.  When evidence is available at two or more nodes then the sequence and pruning 
algorithms are run multiple times.   For example, if there is evidence for nodes H and L, then 
only nodes I and J need to be updated in order to see the effect of the evidence of both nodeson 
node ‘K’.  The remaining nodes do not need to be updated, as they could not impact ‘K’ through 
some other paths. 
 
3.3 Computation of Posterior Probability 
  
Once the sequence is obtained, the iterative application of Bayes’ rule is used for computing the 
posterior distribution of the affected variables in the net. In our example, suppose the decision 
maker has taken actions ‘M’ and ‘A’ at time 6 and 8, respectively. The conditional probability 
tables associated with each non-root node are not shown in the figure to enhance the readability 
of the figure. The reader should be able to trace the flow of information as the actions take place. 
For instance, node ‘B’ would be updated at time 7 and 9. Similarly, node ‘D’ would be updated 
at times 11 and 13. The times of update for other nodes could be computed in the similar manner. 
Once we finish the update in the forward direction, the findings could be entered in the system. 
Suppose we get evidence about the presence of ‘H’ at time 24. Mathematically, P’(H) = 1.0 @ 
24, where the notation P’(H) means that this is an updated marginal probability. Before getting 
this evidence, the marginal probabilities and their times of update for node ‘H’ and its parents ‘F’ 
and ‘I’ are as follows: 

P (H) = 0.44 @ 23 
P (F) = 0.21 @ 21 
P (I) = 0.12 @ 15 

 
After updating node ‘H’ at time 24, the belief updating process selects the next element in 

‘NodeList’ which is ‘I’ in our example. The time delay on the arc between ‘H’ and ‘I’ is 1. 
Hence the probability of ‘I’ at time 23 should be revised. The probability is computed as 
 

P’(I) = P(I | H) P’(H) + P(I | ~H) P’(~H)      (1) 
 
where P(I | H) and P(I | ~H) are computed using Bayes’ rule. P’(H) and P’(~H) represent the new 
probability of H and ~H as a result of the new evidence.  
 



P(I | H) = P(H , I) / P(H)        (2) 
P(I | ~H) = P(~H, I) / P(~H)        (3) 

 
The numerator of Eq. (2) can be expanded as 
P(H, I) = P(H, I, F)  + P(H, I, ~F)  = P(H | I, F) P(I, F) + P(H | I, ~F) P(I, ~F)   (4) 
 
As discussed earlier, TINs assume that both parents of ‘H’, i.e., ‘I’ and ‘F’, are independent, 
which results in the simplification of equation (4), 
 

P(H, I) = P(H | I,F) P(I) P(F) + P(H | I,~F) P(I) P(~F)                  (5) 
 
Suppose the Conditional Probability Matrix for node ‘H’ is given as 
 

P(H | I, F) = 0.15 P(H | I, ~F) = 0.98 
P(H | ~I, F) = 0.005 P(H | ~I, ~F) = 0.5 

 
Using these conditional probabilities, equation (5) becomes  
 

P(H,I)= (0.15)(0.12)(0.21)+(0.98)(0.12)(0.79)= 0.097 
 
The numerator of equation (3) can be computed in a similar manner 
 

P(~H,I)= (0.85)(0.12)(0.21)+(0.02)(0.12)(0.79)=0.023 
 
From the above two equations, we can compute equations (2) and (3) 
 

P(I | H) = 0.097 / 0.44 = 0.22 
P(I | ~H) = 0.023 / 0.56 = 0.04 

 
Equation (1) thus becomes: 

 
P’(I) = (0.22)(1.0) + (0.04)(0) = 0.22  

 
The probability of F is updated in a similar manner at time 22, as the time delay on the arc 
between ‘F’ and ‘H’ is 2. After these updates, the probabilities of H, F, and I become: 
 

P’(H) = 1.0 @ 24 
P’(F) = 0.01 @ 22 
P’(I)  = 0.22 @ 23 

 
The next node in the ‘NodeList’ is ‘B’. The time delay between ‘F’ and ‘B’ is 4. Hence 

the probability of B is revised at time 18. It has been discussed earlier that there is no need to 
update the probability of nodes ‘G’, ‘E’, ‘D’, and ‘C’ if the only objective is to observe the 
impact of evidence on the target node ‘K’. But in order to show how the constraint of not 
updating the parent unless all the children are being updated works, we could continue the 
process of backward propagation till we reach node ‘D’. The impact of evidence arrives at ‘D’ 



through both of its children, ‘I’ and ‘E’ at time 21 and 14, respectively. If we update ‘D’ at 21 
based on the new probability of ‘I’ at time 23 then the probability of ‘E’ will also be updated at 
23 during forward propagation. Further, the probability of ‘F’ would be updated at time 29. Since 
the child of ‘F’, i.e., ‘H’ is already an evidence node, the new probability at ‘F’ results in the 
update of the other parent of ‘H’, namely ‘I’ at time 30. Thus, as a result of updating the 
probability of ‘D’ based on the new value of ‘I’ we have obtained a new probability of ‘I’. This 
cycle of update would continue forever. In order to avoid falling into the problem of infinite loop 
which would result if we consider the impacts of ‘I’ and ‘E’ on node ‘D’ individually, the earliest 
time will be used for the update. Hence node ‘D’ will be updated at time 14. In general, if the 
impact of evidence reaches node Y through multiple paths then the update time is computed as  
 

),.......,,min( 2211 YXNXNYXXYXXY tttt ααα −−−=  

where X1, X2, ……, XN represent the children of Y that are already updated. α YX1, α YX2, … …, 
α YXN represent the time delay on the links between Y and its children X1, X2, … … XN, 
respectively while tX1, tX2, …., tXN represent the time of update of X1, X2, … … XN, 
respectively.  
 

                                         
Figure 6: Probability Profiles of Nodes ‘H’ and ‘K’ After Evidence on ‘H’ 

 
Once the backward propagation is finished, the algorithm starts in the forward direction. 

The probability of node ‘L’ is updated at time 21 (the time of last update of B plus the time delay 
on the arc between ‘B’ and ‘L’). The impact of evidence on node ‘J’ arrives through two paths: 
H-I-J, and H-J. The last update of I occurred at time 23 and the arc delay has value 3. Hence 
there is a change in the marginal probability of ‘J’ at time 26. The impact of evidence at ‘H’ 
reaches ‘J’, through the direct path between ‘H’ and ‘J’, in 3 time units. Thus, there is another 
update at time 27 (time of evidence plus delay on arc from H to J). The changes in the marginal 
probabilities of the parents of the target node ‘K’ would result in the computation of new beliefs 
in node ‘K’ at time 23, 27, and 28. These changes are shown in the probability profile of Figure 
6. The figure shows that incorporating the evidence about node H at time 24 changes the 
probability of node K from 0.57 to 0.70 at time 28.  This example assumes that the time delays 



are associated only with the arc. The same technique can be applied for computing the posterior 
probability if the time delays are associated with both nodes and arcs.  
 

The ability to enter evidence in the model allows the possibility to compute the value of 
information. In the planning domain, the decision makers are confronted with the task of the 
placement of evidence gathering resources that may be limited in number. Having the ability of 
finding the impact of certain evidence on the desired objective, the planners would be in a better 
position to decide how to use these scarce resources based on the contribution each evidence 
node makes in reducing the uncertainty in the objective node.  

4 Conclusions 
  
The paper presented a computationally efficient technique for belief updating in Timed Influence 
Nets. The proposed technique updates the nodes in the sequential manner using the constraint 
that all the children of a node affected by the new evidence will be updated first before updating 
the belief in that particular parent node. The algorithm also takes advantage of the fact that in 
TINs, the focus is on observing the behavior of few nodes in the network. Hence there is no need 
to update all the nodes of the network. The nodes that receive impact of evidence and have a path 
to the target nodes only need to be updated. This relaxation helps in applying graph reduction 
techniques on TINs. 
 
 One of the possible limitations of the approach is that the algorithm works only if the 
time stamp of the evidence is later than the time stamp of the last update of the evidence node 
caused by the forward propagation of the effects from all of the action nodes.   This constraint 
might be very strong in some cases. It is quite possible that the evidence could be observed 
earlier than expected by the model. There are few possible approaches to relax this constraint. 
Either the expert should revise the communication and processing delays in the network, or the 
portion of the graph which is in conflict with this new evidence should be pruned before starting 
the backward propagation. The other alternative is to convert the Timed Influence Nets into a 
Time Sliced Bayesian Network (TSBN) and use a vast variety of algorithm available for TSBN. 
The transformation from TINs to TSBNs is addressed in a future paper. It should be mentioned, 
though, that the problem of inference in TSBNs (or even in static Bayesian Networks) is 
computationally intractable. Thus, there is a trade off between the use of approximate algorithms 
and the exact algorithms in terms of accuracy and the time to compute the posterior probability 
of the variable of interest. An efficient algorithm for belief updating in TSBNs is still an area of 
active research. 
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Bayes Theorem: P(A | B) =      P(B | A) P(A)
P(B)

P(A, B) = P(A) P(B)  (A and B are independent)

P(A | B, C) = P(A | C) (A and B are conditionally independent given C)

Important Probability Concepts

Advantages of Probabilistic Belief Networks
64 probability values are required to represent the joint 
distribution of 6 binary state variables, i.e., 26 = 64
Probabilistic Network representations can reduce this 
number significantly
The joint distribution is computed as
P(A,B,C,D,E,F) =  P(F | D,E)P(D | A)P(E | B,C)P(C | A,B)P(A)P(B)

P(A,B,~C,~D, E,F) = P(F | ~D,E)P(~D | A)P(E | ~B,C)P(C | A,~B)P(A)P(~B)

Probabilities for other 62 combinations can be found out similarly.

A

C

D

F

E

B

P(D | A) , P(D | ~A)
(2 Values)

P(F | D,E) , P(F | D,~E), 
P(F | ~D,E), P(F | ~D,~E)

(4 Values)

P(E | B,C) , P(E | B,~C), 
P(E | ~B,C), P(F | ~B,~C)

(4 Values)

P(A) P(B)

Total Values = 16

P(C | A,B) , P(C | A,~B), 
P(C | ~A,B), P(C | ~A,~B)

(4 Values)
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Bayesian Network with Noisy OR (BN2O)
• Based on Independence of Causal Influences Assumption

• Required n parameters to estimate 2n conditional probabilities

• Given P(D | A), P(D | B), and P(D | C)

P(D | A,B,C) = 1 – P(~D | A,B,C)

= 1 – P(~D | A)P(~D | B)P(~D | C) 

A

D

B
P(A) P(B)

C
P(C)

P(D | A,B,C), P(D | A,B,~C), 
P(D | A,~B,C), P(D | A,~B,~C), 
P(D | ~A,B,C), P(D | ~A,B,~C), 

P(D | ~A,~B,C), P(D | ~A,~B,~C)

P(D|B)

P(D|C)
P(D|A)

CAusal STrength (CAST) Logic
• Extension of Bayesian Network with Noisy OR 

(BN2O)
• Inputs have ranges from –1 to 1. 
• hD | A is analogous (but not equal) to P(D | A) while

gD | A is analogous (but not equal) to P(D | ~A).
• If all g values are zero and all h values are positive 

then CAST Logic = BN2O

A

D

B
P(A) P(B)

hD|A , gD|A
(0.99, -0.66)

hD| B , gD| B
(-0.33, 0.66)

C
hD|C , gD|C

(0.66, -0.66)

P(C)
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Influence Nets

Probabilistic Belief Networks that use CAST Logic for model specification are 
termed as Influence Nets.

The current implementation of Influence Nets assume that the parents of a node 
are marginally independent.

Positive Impact

Negative Impact

Root Nodes Non-root Nodes

Roots Nodes typically represents actionable 
events
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Timed Influence Nets

Timed Influence Nets have following additional parameters

A time delay is associated with each arc.

A time delay is associated with each node.

Each actionable event is assigned time stamp(s) at which the decision(s)   
regarding the state of that action is(are) made

1

2

2

1

3

2

2

4

12

A: t = 10  B: t = 11  C: t = 12  D: t = 13, 14  E: t = 13, 16, 17
F: t = 14, 16, 17, 18  G: t = 15, 17, 18, 19

P (A) = 0.30

P (B) = 0.42 P (C) = 0.41

P (D) = 0.53

P (E) = 0.46

P (F) = 0.33

P (G) = 0.49

2

3

At t =10

0     0.532
13   0.740
14   0.941

0     0.488
15   0.771
17   0.616
18   0.624
19   0.632

0     0.488
15   0.408
16   0.616
18   0.617
19   0.625
20   0.632

B

E F

G

C

D

AA
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A

D

E

C

B

D

A

E

B CC

A

D

E D

B

Singly Connected Network(SCN) Multiply Connected Network(MCN)

Belief Updating in Bayesian Networks

Exact Computation of Posterior Probability is

• Possible when the graph is singly-connected

• NP-Hard when the graph is multiply-connected

How to 
compute 

P(B)
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A

D

E
B

C

G

H

F

Computation in Multiply-Connected Networks (MCN)

Step 1: Make the graph unidirectional

Step 2: Moralize the graph by adding a link between common parents
Step 3: Triangulate the graph
Step 4: Order the nodes by using Maximum Cardinality Search

E
G

A

D

B

C

H

F
1

5

6

2

4

8

3

7

AB

BCE

ECG

CGHEFG

B

CE

EG CG

C

CD

NP-H
ARD



System Architectures Lab
George Mason University

M A

L

G

D

B

C

E

H

F

I

J

K

H

F

Step1: [H, F, I]
Step2: [H, F, I, G, B]
Step3: [H, F, I, G, B, D]
Step4: [H, F, I, G, B, D, E]
Step5: [H, F, I, G, B, D, E, M, A]

A node will not be updated during the backward 
propagation until all of its descendants that are 
affected by the evidence are updated first.

Step6: [H, F, I, G, B, D, E, M, A]

Step7: [H, F, I, G, B, E, M, A, D, C]

A cannot be updated as C and D are not updated yet.

D cannot be updated as E is not updated yet.

Step8: [H, F, I, G, B, E, M, A, D, C]
Step9: [H, F, I, G, B, E, M, A, D, C]

Step10: [H, F, I, G, B, E, M, D, C, A]
Step11: [H, F, I, G, B, E, M, D, C, A]
Step12: [H, F, I, G, B, E, M, D, C, A]

G

E

C

D

AM

B

I

L J

K

Sequencing Approach
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Plant Closed

Product
Defective

Light On

Temperature
Sensor

Engine
Status

Belief Propagation in Singly Connected Network

P(L | E,T) = 0.01
P(L | E,~T) = 0.9
P(L | ~E,T) = 0.85

P(L | ~E,~T) = 0.99

P(C | L) = 0.95
P(C | ~L) = 0.02

P(D | E) = 0.10
P(D | ~E) = 0.70

P (E) = 0.95 P (T) = 0.90

Let E = (Engine Status = Normal), T = (Temperature Status = Normal)

L = (Light On = True), D = (Product Defective = True)

C = (Plant Closed = True)

Product
Defective

P(E | D) = P(D | E) P(E)

P(D | E) P(E) + P(D | ~E) P(~E)

P(E | D) = 0.73

P (L) = 0.14

P (D) = 0.13

P (E) = 0.15

Engine
Status

P (E) = 0.73

Light On
P (L) = 0.31

Plant Closed
P (E) = 0.30

P(L | D) = P(L | E,T)P(E)P(T) + P(L | E,~T)P(E)P(~T) +  P(L | ~E,T)P(~E)P(T)

+ P(L | ~E,~T)P(~E)P(~T)

P(L | D) = 0.31

P(C | D ) = P(C | L) P(L) + P(C | ~L) P(~L)

P(C | D) = 0.30

P (D) = 1.0
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B CD

HE F

G IJ

A

Belief Propagation in Multiply Connected Network

P(D’) = P(D | E,F)P(E,F) + P(D | E,~F)P(E,~F) + P(D | ~E,F)P(~E,F)

+ P(F | ~D,~E) P(~D,~E)

Where

P(D | E,F) = P(F | E,D) P(E)P(D)

P(F | E,D) P(E)P(D) + P(F | E,~D) P(E)P(~D)

Similarly,

P(A’) = P(A |B, D)P(B,D) + P(A |B,~D)P(B,~D) + P(A | ~B,D)P(~B,D)

+ P(A | ~B,~D)P(~B,~D)

Where

P(A | B,D) = P(D | A) P(B | A)P(A)

P(D | A) P(B | A)P(A) + P(D | ~A) P(B | ~A)P(~A)

P(E | F) = P(F | E) P(E)

P(F | E) P(E) + P(F | ~E) P(~E)

FE

DB

A

C

H

IG J
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B,3 C,1D,2

H,2E,1 F,2

G,3 I,4J,2

A,1
P (A) = 0.95

P (B) = 0.81 P (D) = 0.09
P (C) = 0.95

P (E) = 0.46

P (F) = 0.48 P (H) = 0.80

P (G) = 0.57 P (J) = 0.74 P (I) = 0.61

Belief Updating in Timed Influence Net

3

2 1

2

4

2

2

1

2

2

2

1

P(A) = 0 at time t = 10 P(H) = 1 at time t = 18 P(E) = 0 at time t = 20 

2
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Conclusions

• A heuristic approach of belief revision for Timed Influence Nets is 
presented.

• The approach updates the nodes in the sequential manner during the 
backward propagation.

• Limitations: The algorithm works only if the time stamp of the evidence 
is later than the time stamp of the last update of the evidence node 
caused by the forward propagation of the effects from all of the action 
nodes. 

• One alternative approach is to convert a Timed Influence Net into a 
Time Sliced Bayesian Network. 


